Linear Regression
This module contains an implementation of the Linear Regression algorithm, a fundamental technique in machine learning for predicting a continuous outcome based on input features.
Usage
To use the Linear Regression algorithm, follow these steps:
- Import the
LinearRegression
class. - Create an instance of the class.
- Fit the model to your training data using the
fit
method. - Make predictions using the
predict
method.
Example:
from LinearRegression import LinearRegression
lr_model = LinearRegression()
lr_model.fit(X_train, y_train)
predictions = lr_model.predict(X_test)
Parameters
learning_rate
: The step size for gradient descent.n_iterations
: The number of iterations for gradient descent.
Installation
To use this module, make sure you have the required dependencies installed: