MinMaxScaler
A custom implementation of a MinMaxScaler class for scaling numerical data in a pandas DataFrame. The class scales the features to a specified range, typically between 0 and 1.
Features
- fit: Calculate the minimum and maximum values of the data.
- transform: Scale the data to the specified feature range.
- fit_transform: Fit the scaler and transform the data in one step.
- get_params: Retrieve the minimum and maximum values calculated during fitting.
Methods
__init__(self, feature_range=(0, 1))
- Initializes the MinMaxScaling class.
- Parameters:
- feature_range (tuple): Desired range of transformed data. Default is (0, 1).
fit(self, data)
- Calculates the minimum and maximum values of the data.
- Parameters:
- data (pandas.DataFrame): The data to fit.
transform(self, data)
- Transforms the data to the specified feature range.
- Parameters:
- data (pandas.DataFrame): The data to transform.
- Returns:
- pandas.DataFrame: The scaled data.
fit_transform(self, data)
- Fits the scaler to the data and transforms the data in one step.
- Parameters:
- data (pandas.DataFrame): The data to fit and transform.
- Returns:
- pandas.DataFrame: The scaled data.
get_params(self)
- Retrieves the minimum and maximum values calculated during fitting.
- Returns:
- dict: Dictionary containing the minimum and maximum values.
Error Handling
- Raises a TypeError if the input data is not a pandas DataFrame in the fit method.
- Raises an error if transform is called before fit or fit_transform.
- Raises an error in get_params if called before fit.
Use Case
Output
Installation
No special installation is required. Just ensure you have pandas
installed in your Python environment.