Skip to content

OrdinalEncoder

A custom implementation of an OrdinalEncoder class for encoding categorical data into ordinal integers using a pandas DataFrame. The class maps each unique category to an integer based on the order of appearance.

Features

  • fit: Learn the mapping of categories to ordinal integers for each column.
  • transform: Transform the categorical data to ordinal integers based on the learned mapping.
  • fit_transform: Fit the encoder and transform the data in one step.

Methods

  1. __init__(self)
    • Initializes the OrdinalEncoding class.
    • No parameters are required.
  2. fit(self, data)
    • Learns the mapping of categories to ordinal integers for each column.
    • Parameters:
      • data (pandas.DataFrame): The data to fit.
    • Raises:
      • TypeError: If the input data is not a pandas DataFrame.
  3. transform(self, data)
    • Transforms the categorical data to ordinal integers based on the learned mapping.
    • Parameters:
      • data (pandas.DataFrame): The data to transform.
    • Returns:
      • pandas.DataFrame: The transformed data.
    • Raises:
      • Error: If transform is called before fit or fit_transform.
  4. fit_transform(self, data)
    • Fits the encoder to the data and transforms the data in one step.
    • Parameters:
      • data (pandas.DataFrame): The data to fit and transform.
    • Returns:
      • pandas.DataFrame: The transformed data.

Error Handling

  • Raises a TypeError if the input data is not a pandas DataFrame in the fit method.
  • Raises an error if transform is called before fit or fit_transform.

Use Case

Use Case

Output

Output

Installation

No special installation is required. Just ensure you have pandas installed in your Python environment.